首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16782篇
  免费   1295篇
  国内免费   1231篇
  2024年   23篇
  2023年   248篇
  2022年   361篇
  2021年   596篇
  2020年   632篇
  2019年   706篇
  2018年   613篇
  2017年   520篇
  2016年   520篇
  2015年   603篇
  2014年   924篇
  2013年   1105篇
  2012年   716篇
  2011年   831篇
  2010年   586篇
  2009年   772篇
  2008年   754篇
  2007年   880篇
  2006年   781篇
  2005年   690篇
  2004年   639篇
  2003年   616篇
  2002年   505篇
  2001年   425篇
  2000年   394篇
  1999年   359篇
  1998年   335篇
  1997年   292篇
  1996年   295篇
  1995年   255篇
  1994年   242篇
  1993年   228篇
  1992年   225篇
  1991年   181篇
  1990年   166篇
  1989年   146篇
  1988年   136篇
  1987年   127篇
  1986年   125篇
  1985年   150篇
  1984年   127篇
  1983年   73篇
  1982年   108篇
  1981年   91篇
  1980年   45篇
  1979年   61篇
  1978年   29篇
  1977年   24篇
  1976年   11篇
  1975年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents.  相似文献   
102.
A 2.3-kb DNA fragment cloned from plasmid pCH200, the largest (52 kb) of four plasmids detected in Staphylococcus xylosus, was found to confer resistance to 14-membered ring macrolides in Bacillus subtilis and Staphylococcus aureus. DNA-sequence analysis of the fragment revealed the presence of an open-reading frame, the deduced product of which was identical to one of the two ATP-binding domains encoded by the macrolide/streptogramin-B-resistance gene msrA of Staphylococcus epidermidis. The observation that a polypeptide homologous to the C-terminus of MsrA is capable of mediating erythromycin resistance in the absence of the N-terminal region is of significance both to the evolution and functional activity of members of the ATP-binding transport super-gene family.  相似文献   
103.
Plasmid mediated quinolone resistance (PMQR) determinants have arisen as a significant concern in recent years. The aim of this study was screening of resistant-clinical isolates to fluoroquinolone antibiotics and detection of qnr and aac(6′)-Ib-cr genes.For this purpose we collected 100 fluoroquinolone-resistant Enterobacteriaceae which were from 3 hospitals in Hamadan, west provinces of Iran, between October 2012 and June 2013. The all samples were identified by biochemical tests and confirmed by PCR method. Antimicrobial susceptibility to 14 antimicrobial agents including levofloxacin and ciprofloxacin were determined by disk diffusion methods and ciprofloxacin MIC was obtained by broth microdilution method as Clinical Laboratory Standards Institute (CLSI) recommendations. The isolates were screened for the presence of qnrA, qnrB, qnrS and aac(6′)-Ib-cr genes using PCR assay. Among the screened isolates, 64 strains (64%) of Escherichia coli, 23 strains (23%) of Klebsiella pneumoniae, 13 strains (13%) of Proteus mirabilis were collected as quinolone-resistant isolates. out of 100 isolates, two (2%) were positive for qnrS, seventeen (17%) isolates were positive for qnrB and we did not find qnrA gene in any of the isolates. There were also 32 positive isolates for aac(6′)-Ib-cr determinant. We described the prevalence of qnr and aac(6′)-Ib-cr genes in fluoroquinolone-resistant Enterobacteriaceae in Hamadan city. The carriage rate of multidrug-resistant Enterobacteriaceae in healthy people in Hamadan City is extremely high. Moreover, genes encoding transferable quinolones, in particular aac(6′)-Ib-cr, are highly prevalent in these strains.  相似文献   
104.
105.
The frontline tyrosine kinase inhibitor (TKI) imatinib has revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, drug resistance is the major clinical challenge in the treatment of CML. The Hedgehog (Hh) signaling pathway and autophagy are both related to tumorigenesis, cancer therapy, and drug resistance. This study was conducted to explore whether the Hh pathway could regulate autophagy in CML cells and whether simultaneously regulating the Hh pathway and autophagy could induce cell death of drug-sensitive or -resistant BCR-ABL+ CML cells. Our results indicated that pharmacological or genetic inhibition of Hh pathway could markedly induce autophagy in BCR-ABL+ CML cells. Autophagic inhibitors or ATG5 and ATG7 silencing could significantly enhance CML cell death induced by Hh pathway suppression. Based on the above findings, our study demonstrated that simultaneously inhibiting the Hh pathway and autophagy could markedly reduce cell viability and induce apoptosis of imatinib-sensitive or -resistant BCR-ABL+ cells. Moreover, this combination had little cytotoxicity in human peripheral blood mononuclear cells (PBMCs). Furthermore, this combined strategy was related to PARP cleavage, CASP3 and CASP9 cleavage, and inhibition of the BCR-ABL oncoprotein. In conclusion, this study indicated that simultaneously inhibiting the Hh pathway and autophagy could potently kill imatinib-sensitive or -resistant BCR-ABL+ cells, providing a novel concept that simultaneously inhibiting the Hh pathway and autophagy might be a potent new strategy to overcome CML drug resistance.  相似文献   
106.
The relationships between xylem tension, velocity of water ascending and transpiration in tobacco plants were measured by means of the “xylem pressure probe technique” (Balling, A. and Zimmermann, U., Planta 182, 325–338, 1990). The flow velocity was determined by suction or injection of fluorescein (or FITC-labelled dextrans of various molecular weights) from the microcapillary of the pressure probe into the punctured xylem vessel, followed by serial-sectioning of the stem after a given propagation time. The distance travelled was defined as the distance from the injection point to the uppermost xylem section in which the dye could be detected. For a transpiration rate of 0.52 ± 0.12 ml . h?1, a linear dependence between the flow velocity and the tension gradients was found as expected from the Hagen-Poiseuille law. The slope of the straight lines decreased with increasing molecular weight of the fluorescent labelled compound, presumably because of (partial) plugging of the pit membranes. The average value of the flow velocity (2.5 . 10?4 ± 0.9 . 10?4 m . s?1) was one magnitude smaller than the value estimated from the geometric dimensions of the xylem vessels, but agreed well with the literature value of 2.8 . 10?4 m . s?1 for herbs (determined by the heat pulse technique; Huber, B. Ber. deutsch. bot. Ges. 50, 89–109, 1932). The average pressure gradient was determined to be 0.39 ± 0.23 MPa . m?1, in agreement with the literature (Begg, J. E. and Turner, N. C. Plant Physiol. 46, 343–346, 1970). The first response of xylem pressure (or tension) and of flow velocity to a reduction of the transpiration rate (0.14 ± 0.06 ml . h?1) occurred after about 24 h, when an increase of the xylem pressure towards higher values associated with a decrease in flow velocity was observed. In contrast, re-establishment of the normal transpiration rate brought the pressure (or tension) and the flow velocity back to normal values within half an hour. Similary, introduction of a transverse cross-sectional cut into the stem did not lead during the first 10 h to a change in xylem tension (or velocity). However, during the following day the pressure fell to relatively low values (about ?0.13 MPa). The velocity increased 10-fold. In the next two days the xylem pressure increased again to normal values (average +0.03 MPa), whereas the flow velocity assumed higher values than normal. The data are discussed in terms of the water status and storage of the adjacent tissue cells.  相似文献   
107.
108.
109.
Abstract Bacitracin and other antibiotics that inhibit late stages in peptidoglycan biosynthesis induce vancomycin resistance in a high-level, inducibly vancomycin-resistant strain of Enterococcus faecium . Exposure to bacitracin led to synthesis of the lactate-containing UDP-MurNAc-pentadepsipeptide precursor required for vancomycin resistance. These findings indicate that inhibition of peptidoglycan biosynthesis can lead to induction of vancomycin resistance and raise the possibility that multiple signals may serve to induce resistance.  相似文献   
110.
The global emergence of antibiotic resistance is one of the most serious challenges facing modern medicine. There is an urgent need for validation of new drug targets and the development of small molecules with novel mechanisms of action. We therefore sought to inhibit bacterial DNA repair mediated by the AddAB/RecBCD protein complexes as a means to sensitize bacteria to DNA damage caused by the host immune system or quinolone antibiotics. A rational, hypothesis-driven compound optimization identified IMP-1700 as a cell-active, nanomolar potency compound. IMP-1700 sensitized multidrug-resistant Staphylococcus aureus to the fluoroquinolone antibiotic ciprofloxacin, where resistance results from a point mutation in the fluoroquinolone target, DNA gyrase. Cellular reporter assays indicated IMP-1700 inhibited the bacterial SOS-response to DNA damage, and compound-functionalized Sepharose successfully pulled-down the AddAB repair complex. This work provides validation of bacterial DNA repair as a novel therapeutic target and delivers IMP-1700 as a tool molecule and starting point for therapeutic development to address the pressing challenge of antibiotic resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号